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particle tree and 1-loop amplitudes including vectors and scalars. We also present the

candidate 4-point UV divergences in a form of helicity amplitudes, corresponding to 3-loop

manifestly N=8 supersymmetric and Lorentz covariant counterterm. This may shed some
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We perform a supersymmetric deformation to complex momentum of the 4-point generating

function including higher-loop counterterms and the 1-loop UV finite amplitudes. Using

the explicit form of the scalar part of the 3-loop counterterm and of the 1-loop UV finite

scalar 4-point amplitudes we find that they both have an unbroken E(7,7) symmetry. We

derive from E(7,7) symmetry the low-energy theorem for the 1-loop n-point amplitudes.
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1. Introduction

It has been argued in [1] on the basis of the unitarity methods [2] that 3-loop N=8 su-

pergravity (SG) [3] is finite and moreover, in four dimensions UV divergences cannot arise

before 5 loops. More recently a 3-loop four-point amplitude was constructed in [4] using the

unitarity method and was shown to be not only finite but superfinite: the difference between

the actual degree of divergence and the superficial degree of divergence is equal to minus six.

The 3-loop finiteness only requires that the actual degree of divergence is negative, since

the superficial degree of divergence corresponding to a logarithmic UV divergence, is zero

in this case. The 3-loop finiteness demonstrated in [4] is in agreement with the expectation
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from the unitarity cut method for computing amplitudes in maximally supersymmetric

theories [1, 2]. The unitarity cut method is valid also in higher dimensions, in particular,

in d = 10 it matches exactly the field theory limit of the expressions derived in [5].

Due to the existence of the candidate Lorentz covariant 3-loop on-shell counterterm [6,

7] it remains unclear why the UV divergence described by this candidate counterterm does

not appear in the calculations of [4]. If we find why this counterterm may be forbidden, it

may help us to understand the UV properties of N=8 SG and open a new way to address

the conjecture of its all-loop finiteness [10].

One may try to give several different explanations why the 3-loop divergence is absent.

For example, for L ≥ 8 loops the full non-linear Lorentz covariant counterterms are avail-

able [8, 6]. Meanwhile, only the linearized version of the 3-loop counterterm is known, so

one could suspect that the 3-loop finiteness discovered in [4] is related to the absence of the

explicit non-linear 3-loop counterterm. However, we believe that this explanation is not

valid since the finite 1-loop 4-point amplitudes are described by the same linearized super-

fields as the 3-loop counterterm [9]. Another explanation was suggested recently in [10]. It

was noted there that the covariant L loop counterterms may exist only if they can also be

constructed by a different method, using the CPT-conjugate light-cone superfield of N=8

SG [11, 12]. As explained in [10], there are certain obstacles which may forbid construc-

tion of counterterms by this method for any number of loops. Recently it was suggested

that one may overcome these difficulties and derive the 3-loop counterterm in terms of the

light-cone superfields from the covariant counterterms [13], but the actual construction is

not yet available. A significant progress in understanding N=8 SG is required at this

stage, in addition to direct computations of the higher-loop amplitudes.

The main purpose of this paper is to study the bosonic 4-point amplitudes in N=8

supergravity. We will present the explicit amplitudes with scalars which have not been

computed so far. This will allow us to verify the linearized E(7,7) symmetry of the 3-

loop counterterm and 1-loop UV finite amplitudes. We will translate the covariant 3-loop

counterterm into a helicity formalism for 4-graviton, 4-vectors and 4-scalar amplitudes.

We hope that this will help us eventually to test the existence of the proper light-cone

superfield 3-loop counterterm.

First, we will compute the 4-particle tree amplitudes for vectors and scalars using the

generating functional method proposed recently in [14]. The input into such functional is

the 4-graviton amplitude, other amplitudes are given by the generating functional so that

the supersymmetric Ward Identities of N=8 SG derived in [1] are satisfied. We will also

compute the 4-scalar tree amplitude using the old-fashioned method of Feynman graphs

following from the N=8 SG action. In this way we will have an independent confirmation

of the generating function method of [14]. From the explicit tree level scalar and vector

4-point amplitudes we will find the 3-loop UV divergent candidate 4-point amplitudes and

the 1-loop UV finite scalar amplitudes, using the gravitational part of the counterterms

and 1-loop amplitudes which are known explicitly.

A significant new input into the information about N=8 SG was made in [15] where

the supersymmetric generalization of the theory to the complex momenta was proposed.

It includes a shift in commuting as well as anticommuting spinors describing the external
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states. A new type of recursion relation between amplitudes was derived in [15] from the

vanishing of specific amplitudes at large complex momenta. We will use an analogous way

of description of the counterterms, the candidate for the UV divergent amplitudes, and the

1-loop 4-point amplitudes to construct a supersymmetric generalization of them for the

case of complex momenta.

We are also interested in the 1-loop 4-point scalar amplitudes with regard to the E(7,7)

symmetry. The related one-soft-scalar theorems for all tree amplitudes were established

in [14] using Feynman graph methods, in [15] using the complex deformation of momenta

and the recursion relations and in [16] using the E(7,7) Noether current constructed in [17].

It is not known if this symmetry is also valid at the 1-loop level. After computing the 1-loop

scalar amplitudes we will be able to study their E(7,7) symmetry. After we compute the

explicit scalar amplitudes corresponding to the 3-loop counterterm we will test its linearized

E(7,7) symmetry. If the symmetry would be broken, the counterterm would not be valid

and this would be an explanation of the 3-loop finiteness. However, we will actually find

that the 3-loop counterterm has a linearized E(7,7) symmetry. Also we will find that the

1-loop UV finite 4-point amplitudes are E(7,7) symmetric. Moreover, we will study the

E(7,7)symmetry of the 1-loop n-point amplitudes by looking at the 1-scalar-soft limit of the

4-point function with complex momenta.

The paper is organized as follows. In section 2 we introduce the generating function

for the 4-point amplitudes of N=8 SG based on a perturbative expansion of the all positive

helicity function PL(1+, 2+, 3+, 4+). We provide an input for this function at the tree level,

L = 0, at the 3-loop counterterm level, L = 3 and at the UV finite 1-loop level, L = 1. We

also explain how to get all 4-point amplitudes starting from the function PL(1+, 2+, 3+, 4+).

In section 3 we compute the 4-vector amplitude and the 2-scalar-2-vector tree amplitudes.

For the 4-scalar tree amplitudes we present in section 4 the explicit expression derived from

the generating function as well as from the Feynman rules. In section 5 we use the tree

level explicit amplitudes derived in the previous sections to find the helicity amplitudes

corresponding to the 3-loop counterterm. In section 6 the supersymmetric deformation of

the generating function is studied. We find that the 3-loop counterterm does not depend

on deformation and, in particular does not vanish at large complex momenta. The 1-loop

amplitude does vanish at large z. In section 7 we prove that both 1-loop finite 4-point

amplitudes as well as 3-loop counterterms have an unbroken E(7,7) symmetry. Assuming

that the E(7,7) Noether current is conserved for complex momenta we establish the relevant

low-energy theorem for the n-point 1-loop amplitudes with generic n. In section 8 we

describe our findings and possible directions of the future work.

2. The 4-point generating function in N=8 SG

Our main tool for calculating the amplitudes is the generating function method for N=8

SG described in [14].1 We also use some features of the corresponding generating function

in N=4 YM as suggested in [18].

1We use notations from this paper. The spinor products are defined as follows: 〈ij〉 = λ̃iα̇λ̃α̇
j and

[ij] = λα
i λjα.
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We suggest to use the perturbative form of the all-loop generating function for N=8

SG 4-point function in the following form

Ω4 = δ4
(

∑

i

λαiλ̃α̇i

)

δ16
(

∑

i

λ̃α̇
i ηiA

)

P(1+, 2+, 3+, 4+). (2.1)

Here i = 1, 2, 3, 4 stands for 4 particles each with momentum λαiλ̃α̇i = −(pαα̇)i and ηiA

is a set of anticommuting variables and the index A is an SU(8) index, A = 1, . . . , 8. The

gravitational coupling constant is κ2 and L is the number of loops. Here P =
∑

L PL

and PL(1+, 2+, 3+, 4+) is the function of spinors λαi and λ̃α̇i, and it has the following

properties: it is symmetric in all 4 points and carries helicity +2 at each 4 points. It is

related to the 4-point gravity amplitude as follows:

M(1−, 2−, 3+, 4+) = 〈12〉8P(1+, 2+, 3+, 4+) . (2.2)

The generating function is manifestly supersymmetric under 16 supersymmetries and

translation

Qα̇
A Ω4 = QAα Ω4 = P α̇α Ω4 = 0 (2.3)

which are defined as

Q̃α̇
A =

∑

i

λ̃α̇
i ηiA , QAα =

∑

i

λα
i

∂

∂ηiA
, {QAα, Q̃α̇

B} = δA
B

∑

i

λ̃α̇
i λα

i = δA
BP α̇α

(2.4)

and P α̇α ≡∑i P α̇α
i .

The generating function is dimensionless. We assign dimensions of x to be -2 and

of θ to be -1, this will translate into dimension of δ4(λλ̃) ∼
∫

d4xeiλλ̃x to be -8 and

that of δ16(λ̃η) ∼
∫

d16θeθλ̃η to be +16. Dimension of κ is -2. At every loop order

PL(1+, 2+, 3+, 4+) has dimension -8.

For the tree amplitudes we may use the following form

P0(1+, 2+, 3+, 4+) =
s12s14

κ2s13

1

(〈12〉〈23〉〈34〉〈41〉)2 . (2.5)

Here −sij = (pi +pj)
2 = 〈ij〉[ij]. The product of spinor angle brackets provides helicity +2

at each 4 points. In terms of the standard Mandelstam variables s12 = s, s13 = t, s14 = u

it is

P0(1+, 2+, 3+, 4+) =
s u

κ2t

1

(〈12〉〈23〉〈34〉〈41〉)2 . (2.6)

The dependence on Mandelstam variables, s, t, u in the form s u
κ2t

is present in N=8 su-

pergravity as different from N=4 YM where the analogous P function is

P0
Y M (1+, 2+, 3+, 4+) =

1

〈12〉〈23〉〈34〉〈41〉
and carries helicity +1 at each point.

For the 3-loop counterterm appropriate for the helicity formalism as suggested in [9, 10]

we take

P3
UV (1+, 2+, 3+, 4+) = κ6stuP0(1+, 2+, 3+, 4+) =

(

s12s14

〈12〉〈23〉〈34〉〈41〉

)2

κ4 . (2.7)
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For the 1-loop UV finite amplitude [19, 1] we take according to [9, 10]

P1(1+, 2+, 3+, 4+) = κ2stuP0(1+, 2+, 3+, 4+)F box (2.8)

The box integral is represented by the functions I1−loop
4 [19, 1] of dimension -8:

F box =
(

I1−loop
4 (s12, s23) + I1−loop

4 (s12, s13) + I1−loop
4 (s23, s13)

)

. (2.9)

The explicit form of these integrals can be taken from eq. (B2) of [20] (or from eq. (4.25)

of [21]). The IR divergence is taken care by using dimension d = 4− 2ǫ and computing the
1
ǫ

terms as well as ǫ-independent terms. The terms 1
ǫ2

cancel between the 3 terms above.

The individual entry is [20]

I1−loop
4 (s, t) = − 1

(−s)1+ǫt

[

4

ǫ2
+

2 ln(s/t)

ǫ
− 4π2/3 + O(ǫ)

]

. (2.10)

2.1 The amplitudes

To extract the 4-point amplitudes from the generating function one has to pull out 16

anticommuting variables [14]: each external state is associated with a differential operator.

We present them in the following order: positive helicity graviton, b+(i), positive helicity

gravitino, fA
+ (i), etc. all the way till negative helicity graviton, b−(i), representing all

physical states of the CPT conjugate supermultiplet of N=8 SG:

b+(i) ↔ 1, fA
+ (i) ↔ ∂

∂ηiA
, bAB

+ (i) ↔ ∂2

∂ηiA∂ηiB
, fABC

+ (i) ↔ ∂3

∂ηiA∂ηiB∂ηiC
,

bABCD(i) ↔ ∂4

∂ηiA∂ηiB∂ηiC∂ηiD
, f−

ABC(i) ↔ − 1

5!
ǫABCDEFGH

∂5

∂ηiD . . . ∂ηiH
,

b−AB(i) ↔ 1

6!
ǫABCDEFGH

∂6

∂ηiC . . . ∂ηiH
, f−

A (i) ↔ − 1

7!
ǫABCDEFGH

∂7

∂ηiB . . . ∂ηiH
,

b−(i) ↔ 1

8!
ǫABCDEFGH

∂8

∂ηiA . . . ∂ηiH
.

(2.11)

One then acts with these operators on the generating function in (2.1), (2.2) to get the

amplitude. In the tree approximation the 4-graviton amplitude in helicity formalism is

M tree(1−, 2−, 3+, 4+) =
〈12〉4[34]4

κ2stu
. (2.12)

The 4-graviton amplitude which for a long time was considered as a candidate for

the 3-loop divergence [6, 7, 10] is given by the square of the Bel-Robinson tensor,

RαβγδR̄α̇β̇γ̇δ̇R
αβγδR̄α̇β̇γ̇δ̇ which in helicity formalism is [10]

M3
UV (1−, 2−, 3+, 4+) = κ6stuM tree(1−, 2−, 3+, 4+) = κ4〈12〉4[34]4. (2.13)

For the 1-loop UV finite amplitude we get

M1(1−, 2−, 3+, 4+) = 〈12〉4[34]4F box , (2.14)

– 5 –
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where F box is defined in eq. (2.9).

The supersymmetric partners of the 4-graviton 3-loop amplitude can be inferred either

from the local superaction integral [6, 7] by performing the integration over the anti-

commuting variables or, alternatively, by using the generating functional method [14]. The

1-loop amplitudes including scalars will allow us to study their E(7,7) symmetry.

3. Amplitudes with vectors

In this section we discuss only tree amplitudes and use notation where κ2 = 1.

3.1 4-vector and 2-scalar-2-vector tree amplitude

Our first example how to use the generating function to get the 4-point vector amplitude

is given by the 4-vector amplitude

〈b−ABb−CDbEF
+ bGH

+ 〉 =
1

6!
ǫABA′B′C′D′E′F ′

∂6

∂η1A′ . . . ∂1F ′

× 1

6!
ǫCDKLMNPQ

∂6

∂η2K . . . ∂2Q

∂2

∂η3E∂3F

∂2

∂η4G∂4H
Ω4, (3.1)

Using Young tableaux the tensor product 28A ⊗ 28A ⊗ 28A ⊗ 28A can be shown to contain

three singlets. If we manage to find three linearly independent invariant tensors that

transforms in the representation above we can use these in an ansatz for the four point

function. What is then the expressions for these singlets? Singlets in SU(8) must be

constructed using δA
B , ǫABCDEFGH and ǫABCDEFGH . For a given index structure we then

pick matching δ’s and ǫ’s, write down indices and finally (anti)symmetrize if necessary. In

our case a good ansatz is

〈b−ABb−CDbEF
+ bGH

+ 〉 = aδEF
ABδGH

CD + bδGH
AB δEF

CD + cδEFGH
ABCD , (3.2)

where δEF
AB and δEFGH

ABCD are antisymmetrized delta functions that take the values 0,1 and

-1. To fix the values of a, b and c we calculate, using the generating functional method,

the amplitudes where {A . . . H} takes the values {12131213}, {12131312}, and {12342341}
respectively. Since the terms can be made to vanish independently we know that they

aren’t linear combinations of each other. This guarantees us that the ansatz above is

sufficient. For the first set of indices all terms except the first vanishes and we get for the

tree amplitude

a =
[34]4

stu〈12〉4 〈12〉
5〈14〉〈23〉〈34〉 = −〈12〉2[34]2

t
. (3.3)

Similar calculations the other sets of indices give

b = −〈12〉2[34]2
u

and c = −〈12〉2[34]2
s

(3.4)

and thus the 4-point vector amplitude at the tree level is

〈b−ABb−CDbEF
+ bGH

+ 〉 = −〈12〉2[34]2
[

1

t
δEF
ABδGH

CD +
1

u
δGH
AB δEF

CD +
1

s
δEFGH
ABCD

]

. (3.5)

– 6 –
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3.2 2-vector-2-scalar tree amplitude

Here we have to compute

〈b−ABbCD
+ bEFGHbIJKL〉= 1

6!
ǫABMNPQRS

∂6

∂η1M . . . ∂1S

∂2

∂η2C∂2D

∂4

∂η3E∂3F ∂3G∂3H

∂4

∂η4I∂4J∂4K∂4L

Ω4.

(3.6)

In this case we know that the four point function is written in terms of the singlets in

28A ⊗ 28A ⊗ 70A ⊗ 70A. Using Young tableaux we see that the tensor product contains

three singlets and we thus make the ansatz

〈b−ABbCD
+ bEFGHbIJKL〉 = aδCD

AB ǫEFGHIJKL + bδ
[EF
AB ǫGH]IJKLCD + cδ

[IJ
ABǫKL]EFGHCD (3.7)

where antisymmetrization is defined with a factor 1/4!. Again, the values of a, b and c

can be fixed by choosing {A . . . L} in an appropriate way, in this case {161612345678},
{121312452678} and {121324561278} respectively. We fix a by evaluating the first combi-

nation:

a = 〈b−16b16
+ b1234b5678〉 =

[34]4

stu〈12〉4 〈13〉
3〈14〉3〈23〉〈24〉 = −〈13〉2[23]2

s
. (3.8)

Similar calculations gives us

b = −3!
〈13〉2[23]2

t
and c = −3!

〈13〉2[23]2
u

. (3.9)

Thus the result for the 2-vector-2scalar tree amplitude is:

〈b−ABbCD
+ bEFGHbIJKL〉 = −〈13〉2[23]2

[

1

s
δCD
AB ǫEFGHIJKL +

3!

t
δ
[EF
AB ǫGH]IJKLCD

+
3!

u
δ
[IJ
ABǫKL]EFGHCD

]

. (3.10)

4. 4-Scalar tree amplitude

In this section again we discuss only tree amplitudes and therefore use notation where

κ2 = 1. The 4-scalar amplitude we will compute using two methods. The first one is the

same as we used for the 4-vector and 2-vector-2scalar case above, namely we will use the

generating function. The second computation of the 4-scalar tree amplitude we will perform

using the Feynman rules of N=8 SG. The reason for doing this double computation is the

following. In N=4 YM theory there were many computations using the standard Feynman

diagrams for gauge fields with polarization operators and the results have been shown to

lead to helicity amplitudes in the form which is most useful for N=4 YM theory. In N=8

SG no such computations of the 4-scalar tree level amplitude have been performed neither in

the helicity formalism using the generating function nor using the standard Feynman rules.

Since we will use the explicit form of the 4-scalar amplitude at the tree level to identify

the 4-scalar candidate UV divergent amplitude at the 3-loop level, we would like to make

sure that our expression passes the test: it is the same when computed via the generating

function method as the one computed from the Feynman rules.

– 7 –
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4.1 Generating functional

The expression for the 4-scalar amplitude is

〈bABCDbEFGHbIJKLbMNPQ〉 =
∂4

∂η1A∂η1B∂η1C∂η1D

∂4

∂η2E∂η2F ∂η2G∂η2H

∂4

∂η3I∂η3J∂η3K∂η3L

∂4

∂η4M∂η4N∂η4P ∂η4Q
Ω4. (4.1)

The tensor product 70A ⊗70A ⊗70A ⊗70A contains five singlet irreducible representations.

The six singlets

OA...Q
1 =ǫABCDEFGHǫIJKLMNPQ, OA...Q

4 =
1

4!4

∑

perm

(−1)permǫ1112131431324344ǫ2122232441423334

OA...Q
2 =ǫABCDIJKLǫEFGHMNPQ, OA...Q

5 =
1

4!4

∑

perm

(−1)permǫ1112131421224344ǫ3132333441422324

OA...Q
3 =ǫABCDMNPQǫEFGHIJKL, OA...Q

6 =
1

4!4

∑

perm

(−1)permǫ1112131421224344ǫ4142434431322324 ,

(4.2)

where {11, 12, 13, 14} are permutations of {A,B,C,D} and so forth, are related trough

O1 + O2 + O3 = 12 (O4 + O5 + O6) . (4.3)

This means that the ansatz

〈bABCDbEFGHbIJKLbMNPQ〉 = aOA...Q
1 + bOA...Q

2 + cOA...Q
3 + dOA...Q

4 + eOA...Q
5 + fOA...Q

6

(4.4)

contains five linearly independent singlets and thus should capture the four point func-

tion. To fix the coefficients we calculate the four point function when {A . . . Q}
takes the six values {1234123456785678}, {1234567812345678}, {1234567856781234},
{1234127856345678}, {1234127856785634} and {1234567812785634}, giving us

b + c +
d

3!
=

[34]4

〈12〉4stu〈12〉
4〈34〉4 =

s3

tu

a + c +
e

3!
=

[34]4

〈12〉4stu〈13〉
4〈24〉4 =

t3

su

a + b +
f

3!
=

[34]4

〈12〉4stu〈14〉
4〈23〉4 =

u3

st

c +
1

3!2
(d + e + f) =

[34]4

〈12〉4stu〈12〉
2〈13〉2〈24〉2〈34〉2 =

st

u

b +
1

3!2
(d + e + f) =

[34]4

〈12〉4stu〈12〉
2〈14〉2〈23〉2〈34〉2 =

su

t

a +
1

3!2
(d + e + f) =

[34]4

〈12〉4stu〈13〉
2〈14〉2〈23〉2〈24〉2 =

tu

s
. (4.5)
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Because of (4.3) this system is degenerate. One particulary symmetric solution is

a =
tu

s
, b =

su

t
, c =

st

u
, d = 2(3!)s, e = 2(3!)t, f = 2(3!)u (4.6)

giving us the correlation function

〈bABCDbEFGHbIJKLbMNPQ〉= tu

s
ǫABCDEFGHǫIJKLMNPQ +

su

t
ǫABCDIJKLǫEFGHMNPQ

+
st

u
ǫABCDMNPQǫEFGHIJKL

+
1

2(4!)3

∑

perm

(−1)perm
[

sǫ1112131431324344ǫ2122232441423334

+ tǫ1112131421224344ǫ3132333441422324

+ uǫ1112131421223334ǫ4142434431322324

]

. (4.7)

4.2 N=8 SG tree Feynman graphs for the 4-scalar amplitude

There are two types of Feynman graphs which form a tree level 4-scalar amplitude. There

is a cubic scalar-scalar-graviton interaction with the graviton exchange and a contact 4-

scalar interaction. To establish the relevant Feynman rules we need the gravity part and

the scalar part of the action [3, 17]

LR+sc = −1

2
eR − e

96
AABCD

µ Aµ
ABCD = −1

2
eR − e

12
Tr

(

1

1 − yȳ
∂µy

1

1 − ȳy
∂µȳ

)

, (4.8)

where we use the convention κ2 = 1 and

yAB,CD = φABEF

(

tanh
√

φ̄φ/8
√

φ̄φ

)EF

CD

=
1√
8

(

φABCD − 1

4!
φABEF φ̄EFGHφGHCD

)

+ O(φ5)

(4.9)

and

φABCD =
1

4!
ǫABCDEFGHφ̄EFGH . (4.10)

Using this we can expand

− e

12
Tr

(

1

1 − yȳ
∂µy

1

1 − ȳy
∂µȳ

)

= − e

12
Tr
(

(1 + yȳ) ∂µy (1 + ȳy) ∂µȳ + O(y6)
)

= − e

4(4!)
Tr

(

∂µφ∂µφ̄ +
1

8
φφ̄∂µφ∂µφ̄ +

1

8
∂µφφ̄φ∂µφ̄

− 1

4!
∂µ(φφ̄φ)∂µφ̄ − 1

4!
∂µφ∂µ(φ̄φφ̄) + O(φ6)

)

= − e

4(4!)
Tr

(

∂µφ∂µφ̄ +
1

4!

(

∂µφ∂µφ̄φφ̄ − ∂µφφ̄∂µφφ̄

+ ∂µφφ̄φ∂µφ̄ − φ∂µφ̄φ∂µφ̄ + O(φ6)

))

.

(4.11)
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The first term will give a kinetic term and a graviton interaction term whereas the other

give scalar interactions. Let us first focus on the graviton exchange. Using
√−g = e

and (4.10) we get

Lsc,g ≃ −
√−ggµν

4

1

4!2
ǫABCDEFGH∂µφABCD∂νφEFGH , (4.12)

where we have written the metric dependence explicitly. To calculate the contribution

coming from the graviton exchange we use gµν = ηµν + hµν , gµν = ηµν − hµν + . . . and

Lsc,g ≃ 1

4

1

4!2
ǫABCDEFGH

(

−∂µφABCD∂µφEFGH + (hµν − ηµν 1

2
hλ

λ)∂µφABCD∂νφEFGH

)

.

(4.13)

We see that for the kinetic term to be appropriately normalized we have to do the rescaling

φ →
√

2φ (One way to see this is by recombining all equivalent terms using (4.10). This

gives a theory of unconstrained complex fields with a kinetic term who’s coefficient is 1/2).

The Feynman rules for the graviton propagator in the Feynman gauge and the scalar-

scalar-graviton vertex are

=
i (ηµαηνβ + ηµβηνα − ηµνηαβ)

2 k2

= −i (ηµνp1 · p2 − p1µp2ν − p1νp2µ) ǫABCDEFGH .

(4.14)

We can now evaluate the diagram

= (−i) (ηµνp1 · p2 − p1µp2ν − p1νp2µ) ǫABCDEFGH×

× (−i) (ηαβp3 · p4 − p3αp4β − p3βp4α) ǫIJKLMNPQi
ηµαηνβ + ηµβηνα − ηµνηαβ

2 (p1 + p2)2
=

= i
tu

s
ǫABCDEFGHǫIJKLMNPQ. (4.15)

Including the other two channels gives the amplitude

〈bABCDbEFGHbIJKLbMNPQ〉graviton =
tu

s
ǫABCDEFGHǫIJKLMNPQ

+
su

t
ǫABCDIJKLǫEFGHMNPQ +

st

u
ǫABCDMNPQǫEFGHIJKL (4.16)

which exactly corresponds to the second line of (4.7). To get the rest of the four point
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function we have to turn to the last four terms in (4.11). First note that

Tr
(

φφ̄φφ̄
)

=
1

4!2
φABCDǫCDEFGHIJφGHIJφEFKLǫKLABMNPQφMNPQ

=
1

4!2
ǫ1314212223243132ǫ3334414243441112φ11121314

φ21222324
φ31323334

φ41424344

=
1

4!2
ǫ1112131421224344ǫ3132333441422324φ11121314

φ21222324
φ31323334

φ41424344
,(4.17)

which has the same index structure as the second term in the third line of (4.7). We

now want to contract (4.11) with the external fields. We see that when an external field is

contracted with φ̄ it give rise to a term with all four of its indices in the same ǫ. Contracting

the first external scalar to the first field in φφ̄φφ̄, the second to the second etc. give, adding

a factor of −i and keeping the rescaling in mind,

i

(4!)4

∑

perm

ǫ1112131421224344ǫ3132333441422324×

× ((−ip1µ)(−ipµ
2 ) − (−ip1µ)(−ipµ

3 ) + (−ip1µ)(−ipµ
4 )) − (−ip2µ)(−ipµ

4 ))

=
i

16(4!)3

∑

perm

ǫ1112131421224344ǫ3132333441422324t. (4.18)

Adding up all 4! contractions gives us the amplitude

=
1

2(4!)3

∑

perm

(

ǫ1112131431324344 ǫ2122232441423334s

+ ǫ1112131421224344ǫ3132333441422324t

+ǫ1112131421223334ǫ4142434431322324u
)

(4.19)

which matches the last two lines in (4.7).

5. 3-loop candidate divergences of the 4-point amplitudes

Starting from the 4-graviton candidate for the 3-loop divergence and using the relation

between the tree 4-amplitudes and 3-loop counterterms, we are ready to present here the 4-

vector, 2-vector-2-scalar and 4-scalar supersymmetric partners of the 4-graviton candidate

for the 3-loop divergence. The 4-graviton amplitude part is given in eq. (2.13) The 4-vector

part is

M3
UV 4vec(b

−
AB , b−CD, bEF

+ , bGH
+ ) = −κ4〈12〉2[34]2

[

s u δEF
ABδGH

CD + s t δGH
AB δEF

CD + t u δEFGH
ABCD

]

.

(5.1)

The amplitude for 2 vectors and 2 scalars is

M3
UV 2vec2sc(b

−
AB , bCD

+ , bEFGH , bIJKL) = −κ4〈13〉2[23]2 ×
[

t u δCD
AB ǫEFGHIJKL + 3! s u δ

[EF
AB ǫGH]IJKLCD + 3! s t δ

[IJ
ABǫKL]EFGHCD

]

. (5.2)
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Finally, the 4 scalar amplitude is

M3
UV 4sc(b

ABCD, bEFGH , bIJKL, bMNPQ) = κ4(t2 u2 ǫABCDEFGHǫIJKLMNPQ+

+ s2 u2 ǫABCDIJKLǫEFGHMNPQ+s2 t2 ǫABCDMNPQǫEFGHIJKL)

+
κ4

2(4!)3

∑

perm

(−1)perm[s2 t u ǫ1112131431324344ǫ2122232441423334+

+ s t2 u ǫ1112131421224344ǫ3132333441422324 + s t u2 ǫ1112131421223334ǫ4142434431322324 ]. (5.3)

Various bosonic amplitudes above presents a 3 loop UV divergent part of the mani-

festly supersymmetric invariant depending on the scalar superfield Wi1...i4(x, θ) whose first

component is the scalar field φi1...i4(x) [6, 7]:

S3
UV = A3

κ4

ǫ

∫

d4xD[i1...i4][j1...j4]D̄[k1...k4][l1...l4] × (Wi1...i4Wj1...j4Wk1...k4
Wl1...l4). (5.4)

The integration measure is an SU(8) tensor and it corresponds to the integration over

the half of the 32 superspace anti-commuting coordinates. The kernel is an SU(8) tensor

corresponding to a square Young tableaux, which is the 232848 representation of the SU(8).

This is a structure of the UV divergence, with ǫ = d − 4, at the 3-loop order in N=8

supergravity.

If one would perform explicitly the 16 Grassmann integration in (5.4), one would

find all 4-point bosonic amplitudes which we have already obtained using the generating

function or Feynman rules and the known relation between the tree diagrams and the

3-loop counterterm in the 4-graviton amplitude.

6. Supersymmetric complex deformation of the generating function

A method of the complex-valued shift of the momenta of a pair of external particles was pro-

posed in [22]. During the last few years it was used for the on-shell amplitude computations

in gauge theories [23]. More specifically the BCFW shift is performed on two commuting

spinors, specifying the external momenta, for example, on λα(p1) and on λ̃α̇(p2).

A supersymmetric extension of the BCFW complex-valued shift of momenta was pro-

posed in [15]. Each external state is characterized by the momentum pi αα̇ = −λα(pi)λ̃α̇(pi)

as well as by an anti-commuting spinor ηiA. Consider the following shift of particular 2

points, k and l which could be any of the 4 points in the amplitude.

λk(z) = λk + zλl , λ̃l(z) = λ̃l − zλ̃k ηk(z) = ηk + zηl. (6.1)

Here we are using a short notation λα(pi) ≡ λi and λ̃α̇(pi) ≡ λ̃i and skip the SU(8) indices

on the η’s.

The essence of the supersymmetric deformation is the invariance of both delta func-

tions, namely the arguments of both delta functions remain z-independent.

∑

i

λαi(z)λ̃α̇i(z) =
∑

i

λαiλ̃α̇i (6.2)
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and
∑

i

λ̃α̇
i (z)ηiA(z) =

∑

i

λ̃α̇
i ηiA. (6.3)

Another useful property of the 2-point shift above is that the triangular and square brackets

of these two deformed points, k and l, are z-independent, namely

〈kl〉(z) = 〈kl〉 [kl](z) = [kl]. (6.4)

The deformed generating function for the 4-point amplitudes is given by the sum of con-

tribution from all loop orders:

Ω4(z) = δ4
(

∑

i

λαiλ̃α̇i

)

δ16
(

∑

i

λ̃α̇
i ηiA

)

∑

L

κ2(L−1)PL(1+, 2+, 3+, 4+)(z). (6.5)

In this expression we have used the fact that as we have shown above, both δ-functions are

z-independent! The only z dependent factor is the function PL(1+, 2+, 3+, 4+) which is

symmetric in all particles, has +2 helicity at each point and depends on commuting spinors

λ and λ̃ at each point.

6.1 Tree level

For the tree amplitudes we have

P0(1+, 2+, 3+, 4+) =
si,i+1si,i+3

κ2si,i+2

(

k=i+4
∏

k=i

〈k(k + 1)〉
)−2

. (6.6)

We may now pick up any two points out of these 4 for the supersymmetric deformation

and check that

P0(1+, 2+, 3+, 4+)(z)z→∞ → 1

z2
. (6.7)

Thus the total generating function at the tree level Ωtree
4 behaves as 1/z2. It is easy to

preserve this nice large z behavior for the amplitude with two negative helicities. The

relation between P0(1+, 2+, 3+, 4+) and the amplitude with 2 negative (at k and at l

points) and 2 positive graviton helicities involves the z-independent factor 〈kl〉8. In this

way good properties of the function P0(1+, 2+, 3+, 4+) lead to good properties of the 2

negative, 2 positive graviton helicity amplitudes, for example

M0(1−, 2−, 3+, 4+)(z)z→∞ → 1

z2
. (6.8)

6.2 Deformation of counterterms

For the 3-loop counterterm appropriate for the helicity formalism as suggested in [10] we

take

P3
UV (1+, 2+, 3+, 4+) =

(

κ2s12s14

〈12〉〈23〉〈34〉〈41〉

)2

. (6.9)

One can see that for the choice of the deformation in direction 1 and 2 or in direction 3

and 4 this function is z -independent:

P3
UV (1+, 2+, 3+, 4+)(z) = P3

UV (1+, 2+, 3+, 4+). (6.10)
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This means that the (- - + +) 3-loop UV divergent amplitude cannot vanish at large

z. Moreover, we know that M3
UV ∼ 〈12〉4[34]4 and it is simply z-independent for the

deformation in direction of 1 and 2. However, it is interesting that in fact the computation

in [4] shows that the total 3-loop counterterm does not appear and therefore the constant

in eq. (6.10) actually vanishes.

Higher loop counterterms for the 4-point function will differ from the 3-loop ones only

by multiplication of the polynomials of Mandelstam variables. Therefore the corresponding

amplitudes will also not vanish at large z. The conjecture of all-loop finiteness would mean

that no such terms would appear in higher-loop computations.

6.3 Deformation of 1-loop amplitudes

The z dependence of the 1-loop UV finite amplitudes is defined by the z dependence of

P1(1+, 2+, 3+, 4+)(z) =

(

s12s14

〈12〉〈23〉〈34〉〈41〉 (z)

)2

F box(z). (6.11)

The factor in front of F box(z) is z-independent for the deformation in 1,2 or 3, 4 directions.

The box function for the deformation, say in 1, 2 direction is given in appendix B of [20]:

F box(z) = − 1

(−s12)1+ǫs13(z)

[

4

ǫ2
+

2 ln(s12/s13(z))

ǫ
− 4π2/3 + O(ǫ)

]

(6.12)

It has dimension -8, therefore it depends on 1
s12s23

as well as on some logarithmic function

of Mandelstam variables. When this explicit expression for the box function is used we

find that F box(z) at large z has the following terms

1

ǫ

log z

z
,

log z

z
. (6.13)

Therefore at large z the one-loop generating function P1(1+, 2+, 3+, 4+)(z) (the IR diver-

gent part as well as the finite part) vanishes as log z
z

. The consequences of this behavior as

well as the behavior of the generating function at higher loops has to be studied separately.

7. E(7,7) symmetry in perturbative amplitudes of N=8

It is explained in [16] that the unbroken E(7,7) symmetry leads to low-energy theorem

which, in principle, may acquire a more general form then just the vanishing of the one-

soft scalar limit of the on-shell amplitudes. A schematic form of the low-energy theorem

which follows from the unbroken E(7,7) symmetry connects the n+1-point amplitude with

one soft scalar to the n-point amplitude without a scalar:

∂µJµ
Noether = 0 ⇒ M(n + φ(q))q→0 = gKUM(n). (7.1)

A detailed form of these relation is presented in [24, 16]. Here the Kugo-Uehara (KU)

charge gKU serves as a bridge between the soft n + 1-point amplitude and the n-point

amplitude and it is independent on the number of external particles in the amplitude. In
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some cases it may vanish. For example, it was shown to vanish in [16] at the tree level

in N=8 SG. In such case, the E(7,7) symmetry, ∂µJµ
Noether = 0, is reduced to a simple

requirement that the 1-soft-scalar limit vanishes:

Mtree(n + φ(q))q→0 = 0 , gtree
KU = 0. (7.2)

However, in general case the symmetry in higher loops may be valid due to the cancelation

between the two terms in the low-energy theorem:

〈n − m|∂µJµ
Noether|m〉 = M(n + φ(q))q→0 − gKUM(n) = 0. (7.3)

The symmetry only requires that the limit q → 0 of the n+1-point amplitude is related in

a certain way to the n-point amplitude without a scalar. Therefore in a generic situation

beyond tree level, the test of the E(7,7) symmetry includes three steps. First, one has to

evaluate the one-soft scalar limit of the on-shell n+1-point amplitude. Secondly, one has to

evaluate the second term in the low-energy theorem proportional to the n-point amplitude

without a scalar, via the KU charge. The third point is to check if the two terms in eq. (7.3)

cancel. In such case the E(7,7) symmetry has no anomalies since the current is conserved

with account of quantum corrections.

Without this additional study, which corresponds to the computation of the KU charge

via the matrix elements of the Noether current [17] between 1-particle states, one cannot

make a definite statement about the E(7,7) symmetry on the basis of the vanishing of

the 1-soft-scalar limit of the n + 1-point amplitude. In the tree approximation where no

anomalies are expected, ∂µJµ
Noether = 0 is taken for granted. To confirm the expected

symmetry it was necessary to compute both terms in eq. (7.1). The left hand side in

eq. (7.1), M(n + φ(q))q→0, was computed in [14] and in [15], and was found to vanish.

The term on the right hand side, gKUM(n) was computed in [17] and was found to vanish.

These two computations confirm the unbroken symmetry and the low-energy theorem where

each of the two terms vanishes separately.

The case of the 4-point amplitudes in N=8 SG is special. If we assume that the E(7,7)

symmetry is unbroken it means that the soft limit of the 4-point function is related to the

3-point function via the KU charge

〈3 − m|∂µJµ
Noether|m〉 = M(3 + φ(q))q→0 − gKUM(3) = 0. (7.4)

In N=8 SG the on-shell 3-point function vanishes for real momenta, M(3) = 0. This

means that the requirement of unbroken E(7,7) symmetry is equivalent to the requirement

that the 4-point amplitude has a vanishing soft limit, independently of the value of the KU

charge, M(3 + φ(q))q→0 = 0. Here we have explicit expressions for the 4-point scalar as

well as 2-scalar-2-vector amplitudes and we may check the E(7,7) symmetry of the 3-loop

counterterm as well as 1-loop amplitudes. If the limit vanishes for real momenta, it means

that the Noether current [17] is conserved and E(7,7) symmetry is anomaly-free. We will

consider the following limit:

p3 ∼ δ2 , λ̃3 ∼ λ3 ∼ δ , s ∼ t ∼ u ∼ δ2 , δ → 0. (7.5)
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We may also perform a more interesting analysis of the soft limit of the 4-particle ampli-

tudes at complex momenta, in the spirit of [15]. In such case the 3-point amplitude is not

vanishing, M(3) 6= 0. We assume that eq. (7.4) remains valid for the complex momenta. In

terms of commuting spinors we will consider the soft limit at complex momenta as follows

λ̃i 6= λ∗
i , λ3 → 0 ⇒ p3 → 0. (7.6)

Since p2
i = 0 and

∑

i pi = 0 we keep the relation between Mandelstam variables s+t+u = 0

and

−s = 2p1p2 = 2p3p4 − u = 2p1p4 = 2p2p3 , −t = 2p1p3 = 2p2p4. (7.7)

Each of the Mandelstam variables is linear in λ3. Also linear in λ3 are the square

brackets [i3] = λα
i λ3α with i = 1, 2, 4 (we use notation from [14]). The triangular brackets

〈ij〉 = λ̃iα̇λ̃α̇
j are not small. We will also study the limit of small p3 via the soft λ̃3

λ̃i 6= λ∗
i , λ̃3 → 0 ⇒ p3 → 0. (7.8)

In this case the triangular brackets 〈i3〉 are small whereas the square ones are not small.

7.1 Tree level 4-point amplitudes

The study of the soft amplitudes in general can be simplified if we first confirm the E(7,7)

symmetry of the tree 4-point amplitudes which states that M(3 + φ(q))q→0 = 0. Here we

will first look at the 2-scalar-2-vector tree amplitudes in eq. (3.10) where we have to check

the limit when one of the scalar momenta vanishes, for example p3 → 0. There are 3 type

of terms
〈13〉2[23]2

s
,

〈13〉2[23]2
t

,
〈13〉2[23]2

u
. (7.9)

For the 4-scalar tree amplitude in eq. (4.7) we have the following structures

tu

s
,

su

t
,

ts

u
s , t , u. (7.10)

In the real limit, λ̃3 ∼ δ, λ3 ∼ δ and s ∼ t ∼ u ∼ δ2 each of the amplitudes behaves

as δ2. For complex momenta we take λ3 ∼ δ and p3 ∼ s ∼ t ∼ u ∼ δ, or λ̃ ∼ δ

and p3 ∼ s ∼ t ∼ u ∼ δ. Each amplitude is clearly vanishing as δ when either λ or

λ̃ vanishes. If we instead decide to take a limit p4 → 0, we have to take into account

that 〈13〉[23] = −〈14〉[24] and we get the same result, namely the tree 2-scalar-2-vector

amplitude vanishes in any of the soft scalar limit which we study.

7.2 3-loop UV divergent amplitudes

The candidate for the 3-loop divergence (5.4) was constructed only at the linear level. The

linearized E(7,7) symmetry of it was partially established in [7] for the 4-scalar amplitudes.

At the linear level E(7,7) symmetry is reduced to a shift symmetry of scalars since the

3-point counterterm is vanishing. This means that when any of the scalars in the 4-point

amplitude has a soft momentum q, the amplitude should vanish in the soft limit q → 0.

– 16 –



J
H
E
P
0
2
(
2
0
0
9
)
0
5
0

The structure of 4-point 3-loop counterterm presented in section 6 differs from the tree

amplitudes by a factor stu. For the 2-scalar-2-vector amplitudes we get the following terms

〈13〉2[23]2tu , 〈13〉2[23]2su , 〈13〉2[23]2st. (7.11)

All these terms behave as δ8 in the real soft limit and as as δ4 in case of small λ3 as well

as in case of small λ̃3. For the 4-scalar amplitude

t2u2 , s2u2 , t2s2 s2tu , t2su , u2st (7.12)

the situation is analogous. Therefore in the one-soft-scalar limit the counterterm am-

plitudes behave softer than the tree amplitudes. This means that the linearized E(7,7)

symmetry of the 3-loop counterterm is established. This suggests that the 3-loop finiteness

is not due to the absence of the linearized E(7,7) symmetry of the 3-loop counterterm and

we need other explanation of the 3-loop finiteness.

7.3 1-loop UV finite amplitudes with scalars

We are interested in 4-point amplitudes with scalars at the 1-loop level since we would

like to test the linearized E(7,7) symmetry. The generic formula follows from the relation

discussed before, P1(1+, 2+, 3+, 4+) = κ2stuP0F box where F box is defined in eq. (2.9). An

explicit expressions for the 1-loop amplitude for 2 vectors and 2 scalars is

M1
2vec2sc(b

−
AB , bCD

+ , bEFGH , bIJKL) = −〈13〉2[23]2 ×

[

t u δCD
AB ǫEFGHIJKL + 3! s u δ

[EF
AB ǫGH]IJKLCD + 3! s t δ

[IJ
ABǫKL]EFGHCD

]

F box. (7.13)

The 1-loop 4 scalar amplitude is

M1
4sc(b

ABCD, bEFGH , bIJKL, bMNPQ〉 = (t2 u2 ǫABCDEFGHǫIJKLMNPQ+

+ s2 u2 ǫABCDIJKLǫEFGHMNPQ + s2 t2 ǫABCDMNPQǫEFGHIJKL)F box

+
1

2(4!)3

∑

perm

(−1)perm[s2 t u ǫ1112131431324344ǫ2122232441423334+

+ s t2 u ǫ1112131421224344ǫ3132333441422324+

+ s t u2 ǫ1112131421223334ǫ4142434431322324 ]F box. (7.14)

Thus, for the 2-scalar-2-vector case and 4 -scalar case of 1-loop UV finite amplitudes

we get the following dependence on momenta

〈13〉2[23]2tu F box , 〈13〉2[23]2su F box , 〈13〉2[23]2st F box (7.15)

and

t2u2 F box , s2u2 F box , t2s2 F box s2tu F box , t2su F box , u2st F box.

(7.16)
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All these terms in the soft limit behave as δ8F box(δ) in the real case and as δ4F box(δ) for ei-

ther λ̃3 ∼ δ or λ3 ∼ δ . The F box function, according to our dimensional analysis has dimen-

sion - 8 and up to some logarithmic functions depends on Mandelstam variables as follows

F box ∼ f0

st
+

g0

tu
+

e0

us
. (7.17)

Here the functions f0, g0, e0 have dimension zero and may depend on some logarithmic func-

tions of momenta. For the soft limit this will not be relevant since F box ∼ δ−4 up to some

logarithmic dependence on δ in the real case and as F box ∼ δ−2 for soft spinors of only one

kind. The total 1-loop amplitudes therefore in the soft limit inherit 8 (4) powers of softness

from the 3-loop amplitudes and -4 (-2) powers from the box for the real (complex) case.

The result is δ4 up to logarithmic terms for the real limit and δ2 up to logarithmic terms for

the real limit. This proves the linearized E(7,7) symmetry of the 1-loop 4-point amplitudes.

7.4 n + 1-point 1-loop amplitudes with n > 3

The n + 1-point 1-loop amplitudes with n > 3 with scalars are not available in the explicit

form. However, on the basis of the information above which we have got from the case

of the 4-point amplitudes, we can clarify the relation between the E(7,7) symmetry and

the 1-soft-scalar limit of the n + 1-point 1-loop amplitudes with n > 3. For this purpose

we will assume that ∂µJµ
Noether = 0 is also valid for the complex momenta for the 4-point

amplitudes and relay on eq. (7.4) for complex momenta.

We have found above that the soft limit of the 4-point amplitude is vanishing for

complex momenta. Since the 3-point amplitude is not vanishing in this case, from eq. (7.4)

we deduce that the KU charge is vanishing for all 1-loop amplitudes, g1−loop
KU = 0. Now we

can take into account that this charge is a universal bridge between the n+1 amplitude with

a soft scalar and an n-point amplitudes with all hard momenta and use this information in

eq. (7.3). This provides us with the simple form of low-energy theorem for the unbroken

E(7,7) symmetry for the 1-loop n + 1-point amplitudes with n > 3:

〈n−m|∂µJµ
Noether|m〉1−loop = M1−loop(n+φ(q))q→0 = 0 n > 3 since g1−loop

KU = 0.

(7.18)

It remains to find out if M(n + φ(q))q→0 = 0 for n > 3 to complete the test the E(7,7)

symmetry of all 1-loop amplitudes.

8. Discussion

In N=8 SG the supersymmetry guarantees that there are no divergences at 1 or 2 loops,

and it was expected for many years that the first divergence would appear at 3 loops.

The calculation has now been done [4], and there is no 3-loop divergence, moreover, the

theory is superfinite in the 3d loop order. This raises the possibility that these cancelations

continue to higher orders, and that the amplitudes are UV finite order by order.

During the last few years there was a remarkable progress in computational tools

of the amplitudes in N=4 YM and N=8 SG which was not based on the Feynman

– 18 –
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path integral but on unitarity cut method, on recursion relations, complex deformation of

momenta, helicity formalism etc. In this paper we were trying to use these new methods to

understand better the properties of the counterterms, the 3-loop one in the first place. We

also studied the restrictions which the E(7,7) symmetry puts on the on-shell perturbative

amplitudes of N=8 SG.

We have computed the 4-point scalar amplitudes, candidates for the 3-loop UV diver-

gence, in the helicity formalism and tested their E(7,7) symmetry. We prepared them in the

form in which they can be compared with the light-cone counterterms. We also developed

the supersymmetric deformation of the 4-point generating function and studied the large

complex momentum behavior of the counterterms. Using the explicit form of the 1-loop

4-point scalar amplitudes derived in this paper we have verified that the continuous E(7,7)

symmetry is respected by the quantum corrections of N=8 SG.

Our findings so far are in agreement with the fact that the SU(8) symmetry has no

anomalies at the 1-loop level [25]. It has been argued in [10] that this implies the absence of

E(7,7) anomalies. Our explicit computation of the 1-loop 4-point scalar amplitudes confirms

the linearized form of the E(7,7) symmetry and absence of anomalies. With account of the

vanishing soft limit for complex momenta of the 1-loop 4-point scalar amplitudes we derived

the low-energy theorem (7.18) for the 1-loop n-point amplitudes which is simpler than the

generic case (7.3) and which may be useful for the future studies. In particular, if we believe

that the absence of 1-loop SU(8) anomalies is an indication of the absence of the E(7,7)

anomalies, our low-energy theorem (7.18) predicts that all 1-soft-scalar limit of n-point

amplitude should vanish.

We hope that the results in this paper may help to pursue the next levels of investiga-

tions of the UV structure of N=8 SG.
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